Typologie des anomalies, un cadre pour l’action : le cas du machine learning
La qualité d’une donnée désigne son adéquation aux usages et objectifs visés (« fitness for use ») (Boydens, 1999, Boydens 2014). Dans cet article nous allons voir comment une typologie rigoureuse des anomalies offre un cadre pour l’amélioration de la qualité des données, dans de nombreux domaines, dont le machine learning. Continue reading